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1 Overview

We analyzed the stock price data set using a combination of linear and quadratic models
for a total of four models. Unfortunately, things seem to be rather grim for the Mediocre
Social Network Apps Incorporated. From September of 2015 to September 2019, their
stock has been on a steady decline. With our predictions for the first 10 trading days in
the month of October using an ARIMA(1, 1, 1) model after differencing the data, things
don’t seem to improve for the company.

2 Exploratory Data Analysis

We begin by performing exploratory data analysis. Let’s see the stock price starting from
2015 (Figure [1):
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Figure 1: Mediocre Social Network Apps Inc. Stock Price from Jan. 2015 to
Sep. 2019. The colored curves show fitted trends to the series: the red curve
shows the fitted linear model, and the blue curve shows the fitted quadratic
model.

We clearly see a negative trend, and on first glance it appears to be roughly linear. With
the negative slope slowing down towards the end though, the series may be quadratic too.

We note that there are some hints of seasonality, with upward peaks at around the
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middle of each year. However, it is not very distinct nor consistent (in terms of time of
year and how these peaks are shaped), so we decided that these peaks were not due to
seasonality:.

We then proceed to make our data stationary in the next section.

3 Pursuing Stationarity

By the residual plots (Figure , we note slight heteroskedasticity, with more variance
appearing in the beginning of the series. However, taking the log on the data seems to
stabilize the variance, despite the variance decreasing with time, contrary to where we
typically use the log transformation for quadratic increases in variance.
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Figure 2: Residual plots of the original data and the log-transformed data.

With the log-transformed data, we are now ready to fit different ARIMA models and
compare their performances.

4 ARIMA Model Selection

We tried the following ARIMA models (we will refer these models as model 1 to model
4):

1. Differencing by 1 lag, ARIMA(1, 1, 1)

2. Differencing by 5 lags, ARIMA(1, 1, 4)x(1, 0, 1)[5]

3. Differencing by 5 lags, ARIMA(4, 0, 4)x(1, 0, 1)[5]

4. Differencing by 5 lags, fitting to a quadratic model, ARIMA(3, 0, 2)x(1, 0, 1)[5]

We differenced by 1 lag to remove the trend. We also tried differencing by 5 lags to
consider data by the week, since the stock market is only open 5 days a week (Monday
to Friday). We first check the residuals of taking this differenced data in Figure |3} if it
looks like white noise, then taking this difference is sensible since we have successfully
removed potential trends or seasonalities.



To justify why we fit the models above, we turn to ACF and PACF plots (Figure {4
to give insights if there are any autoregressive (AR) or moving average (MA) compo-

nents.
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Figure 3: Residual plots after differencing data.
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Figure 4: ACF and PACF plots for first differences and fifth differences of the

data.

For the first difference, the ACF/PACF looks like white noise, as they are fluctuating
around 0 with less than 5% of the spikes exceeding the blue confidence bands. Since this
model has a non-zero mean for the price, we tried an ARIMA(0, 1, 0) model, but there
were peaks in the ACF after we fitted this model, so we tried ARIMA(1, 1, 1). This
model performed better, so we used this model instead.

For the fifth difference, we had more peaks, and subsequently more models, to consider.
Without considering a quadratic curve, we decided to try both ARIMA(1, 1, 4)x(1, 0,



1)[5] and ARIMA(4, 0, 4)x(1, 0, 1)[5]. There are spikes in the ACF plot from 1 to 4, so
we chose to include 4 MA components. For the PACF, there is a spike at 1, but it seems
to be repeated every 5 lags. This is why we included an AR component and a seasonal
AR component, denoted in the second multiplicative component. When we included a
quadratic component, we fit a ARIMA(3, 0, 2)x(1, 0, 1)[5] model, which seemed to fit
slightly better than other ARIMA models and had better AIC/AICc/BIC values.

After getting these candidate models, we can now compare them by observing p-values
of Ljung-Box statistics, AIC/AICc/BIC, and the sum of squared errors (SSE) from cross
validation.

4.1 p-value Comparison of Ljung-Box Statistics

One way we can compare evaluate the validity of our models is by looking at the p-values
of the Ljung-Box statistic for each model (Figure . Unlike hypothesis testing, we want
the p-values to exceed 0.05, which represents that the residuals are independent (the
alternate hypothesis assumes the residuals are dependent, which we do not want in a
stationary model).
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Figure 5: p-values of the Ljung-Box statistic for each model. The first plot
corresponds to Model 1, the second to Model 2, and so on.

All of these models seem to fit well, but it is worth noting that Model 1 & 3 have higher
p-values (ranging from 0.2 to 0.8) compared to the other models, some of which get close
to the blue dashed line at 0.05, and Model 2 specifically only has the highest p-value at
0.5. By these plots, we would think Model 1 and Model 3 would be better picks.
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4.2 AIC/AICc/BIC Comparison

Another way we can compare our models is using different information criterion (IC):
AIC, AICc, and BIC. Each evaluate models in a similar way: it takes the negative log
likelihood and adds a penalty for model complexity, so we want to minimize these IC’s

as much as possible.

Model AIC AlICc BIC
1. First difference, ARIMA(1, 1, 1) -6.1324 -6.1323 -6.1153
2. Fifth difference, ARIMA(L, 1, 4)x(1, 0, 1)[5] 61201 -6.1200 -6.0816
3. Fifth difference, ARIMA(4, 0, 4)x(1, 0, 1)[5] -6.1211 -6.1209 -6.0698
4. Fifth difference, quadratic, ARIMA(3, 0, 2)x(1, 0, 1)[5] | -6.1312 -6.1311 -6.0928

Table 1: The IC’s for each model.

From Table [2 we see that Model 1 has the smallest AIC, AICc, and BIC. Although the
differences seem very small, since we have log-transformed the data, the differences in
these metrics are also scaled down by the log transformation. It is also worth noting that
Model 1 is much simpler than the others in terms of the number of parameters, which

may be why it performs better here.

4.3 Cross Validation Comparison

Finally, we can use cross validation to verify each model’s performance. The idea is to
hold out some data, then use the remaining data to predict the price the next day (see
Section in the Appendix for the code implementation). We incrementally increase
the amount of data to predict future data points, then sum the squared errors to evaluate

each model. Lower errors means the model fits better.

Model SSE
1. First difference, ARIMA(1, 1, 1) 0.02303
2. Fifth difference, ARIMA(1, 1, 4)x(1, 0, 1)[5] 0.09813
3. Fifth difference, ARIMA(4, 0, 4)x(1, 0, 1)[5] 0.07898
4. Fifth difference, quadratic, ARIMA(3, 0, 2)x(1, 0, 1)[5] | 0.08179

Table 2: The sum of squared errors (SSE) for each model.

We see that Model 1 again performs the best with the smallest SSE by a considerable
margin. Based on all our comparisons, Model 1 always performed well, so we conclude
that taking the first difference of the data, then fitting an ARIMA(1, 1, 1) model is the

most appropriate.



5 Results

Our simplest model turned out to work the best by our analysis. This ARIMA model,
written out, is defined in equation .

(1= B)V(Xy —p) = (1 = 01B) Z, (1)

5.1 Estimation of model parameters

After fitting the model, these are the parameter estimates for the model:

Parameter | Estimate (s.e)
01 -0.0065 (0.0291)
0, ~1.0000 (0.0023)
i 5.9 % 10~7 (0.00003)

Table 3: Parameter estimates and corresponding standard errors for the ARIMA
model in equation [I}

5.2 Prediction

Using the selected ARIMA model, we now make predictions for the next 10 trading days
for the stock in Figure [6}
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Figure 6: Predictions (in red) of the next 10 trading days.

Because of the model’s simplicity and the volatility of stock prices in general, it’s no
surprise that we would not capture all fluctuations, which would be more like noise than
an actual pattern. Considering the downward trend by our predictions, the stocks for
Mediocre Social Network Apps Incorporated will continue to drop in the beginning of
October, and it does not seem like things will turn around for them.



6 Appendix

6.1 Dependencies

library(astsa)

6.2 Exploratory Data Analysis

# Run ‘setwd()‘, passing in the file path of
# the directory your R script is in
stocks <- read.csv("stocks.csv")

quadratic <- function(x) {
return (1.057e-05 * x"2 + -2.577e-02 * x + 37.13)
+
linear <- function(x) {
return (-0.01314 * x + 34.61602)
}
plot.ts(stocks$Price)
curve(linear, from = 0, to = 1200, add = T, col = ’red’)
curve(quadratic, from = 0, to = 1200, add = T, col = ’blue’)

6.3 Pursuing Stationarity

time <- 1:length(stocks$Price)
no_transform_model <- 1m(log(stocks$Price) ~ time)
plot(no_transform_model$residuals, type = 17,
main = "Residual Plot",
ylab = "Residuals")
log_transform_model <- lm(log(stocks$Price) ~ time)
plot(log_transform_model$residuals, type = ’1’,
main = "Residual Plot of Log Data",
ylab = "Residuals")

6.4 ARIMA Model Selection
6.4.1 ACF/PACF plots

differenced <- diff(log(stocks$Price), lag = 1)
acf2(differenced)
differencedb <- diff(log(stocks$Price), lag = 5)
acf2(differenced5)

6.4.2 SARIMA output

# Model 1

sarima(differenced, 1, 1, 1)

# Model 2

sarima(differenced5, 1, 1, 4, P=1, D=0, Q =1, S =05)



# Model 3

sarima(differenced5, 4, 0, 4, P=1, D=0, Q =1, S =05)
# Model 4

time <- 1:length(differencedb)

time_sq <- time"2

param_model <- lm(differencedb5 ~ time + time_sq)

sarima(param_model$residuals, 3, 0, 2, P =1, D =0, Q 5)
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6.4.3 Cross Validation

start_index <- 1160
end_index <- length(time)
sum_squared_errors <- c(modell = 0, model2 = 0, model3 = 0, modeld = 0)
for (index in start_index:end_index) {
train_setl <- window(differenced, end = index)
test_setl <- window(differenced, start = index, end = index + 1-0.1)

train_set2_3 <- window(differenced5, end = index)
test_set2_3 <- window(differenced5, start = index, end = index + 1-0.1)

train_set4 <- window(param_model$residuals, end = index)
test_setd <- window(param_model$residuals, start=index, end= index + 1-0.01)

forecastl <- sarima.for(train_setl, n.ahead=10, p=1, d=1, g=1,
P=0, D=0, Q=0, S=0)$pred

forecast2 <- sarima.for(train_set2_3, n.ahead=10, p=1, d=1, g=4,
P=1, D=0, Q=1, S=5)$pred

forecast3 <- sarima.for(train_set2_3, n.ahead=10, p=4, d=0, g=4,
P=1, D=0, Q=1, S=5)$pred

forecast4 <- sarima.for(train_set4, n.ahead=10, p=3, d=0, g=2,
P=1, D=0, Q=1, S=5)$pred

sum( (forecastl
sum( (forecast2
sum( (forecast3
sum( (forecast4

test_setl)"2)
test_set2_3)"2)
test_set2_3)"2)
test_setd)"2)

sum_squared_errors[1]
sum_squared_errors [2]
sum_squared_errors[3]
sum_squared_errors [4]

sum_squared_errors[1]
sum_squared_errors [2]
sum_squared_errors[3]
sum_squared_errors [4]
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6.5 Results
6.5.1 Estimation of Model Parameters

arima_model <- sarima(differenced, 1, 1, 1)
arima_model$ttable

6.5.2 Predictions

sarima.for(stocks$Price, 10, 1, 1, 1)
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